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Merge sort 

16MB input (32-bit integers) 

Recurse(left) 

Recurse(right) 

Copy back to input array 

Merge to scratch array 

~98% execution time 

~2% execution time 



Merge sort, dual core 

16MB input (32-bit integers) 

Recurse(left) Recurse(right) 

Copy back to input array 

Merge to scratch array 



T7300 dual-core laptop 
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AMD Phenom 3-core  
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The power wall 

• Moore’s law: area of transistor is about 50% smaller each generation 
– A given chip area accommodates twice as many transistors 

 

• Pdyn = α f V2 
– Shrinking process technology (constant field scaling) allows reducing V 

to partially counteract increasing f 
– V cannot be reduced arbitrarily 

• Halving V more than halves max f (for a given transistor) 
• Physical limits  

 

• Pleak = V(Isub + Iox) 
– Reduce Isub (sub-threshold leakage): turn off component, increase 

threshold volatage (reduces max f) 
– Reduce Iox (gate-oxide leakage): increase oxide thickness (but it needs to 

decrease with process scale) 



The memory wall 
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The memory wall 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

O
p

er
at

io
n

s 
 /

 µ
s 

CPU 

Cycles per memory 
access: 200-300 

Memory 



The ILP wall 

• ILP = “Instruction level parallelism” 

• Implicit parallelism between instructions in 
a single thread 

• Identified by the hardware 

– Speculate past memory accesses 

– Speculate past control transfer 

• Diminishing returns 

 



Power wall + ILP wall + memory wall = brick wall 

• Power wall means we can’t just clock 
processors faster any longer 
 

• Memory wall means that many workload’s  
perf is dominated by memory access times 
 

• ILP wall means we can’t find extra work to 
keep functional units busy while waiting 
for memory accesses 

 



Why parallelism? 

Amdahl’s law 

Why asymmetric performance? 

Multi-processing hardware 

Parallel algorithms 



Amdahl’s law 

• “Sorting takes 70% of the execution time 
of a sequential program.  You replace the 
sorting algorithm with one that scales 
perfectly on multi-core hardware.  On a 
machine with n cores, how many cores do 
you need to use to get a 4x speed-up on 
the overall algorithm?” 



Amdahl’s law, f=70% 
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Amdahl’s law, f=70% 

𝑀𝑎𝑥𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑓, 𝑐)  =  
1

  1 − 𝑓 +
𝑓

𝑐 
 
 

 f = fraction of code speedup applies to 
c = number of cores used 



Amdahl’s law, f=70% 
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Amdahl’s law, f=10% 
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Amdahl’s law, f=98% 
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Amdahl’s law & multi-core 

Suppose that the same h/w budget (space or power) can make us: 
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Perf of big & small cores 
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Resources dedicated to core 

Assumption: perf = α √resource 

Total perf: 
16 * 1/4 = 4 

Total perf: 
1 * 1 = 1 



Amdahl’s law, f=98% 
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Amdahl’s law, f=75% 
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Amdahl’s law, f=5% 
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Why parallelism? 

Amdahl’s law 

Why asymmetric performance? 

Multi-processing hardware 

Parallel algorithms 



Asymmetric chips 
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Amdahl’s law, f=75% 
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Amdahl’s law, f=5% 
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Amdahl’s law, f=98% 
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Amdahl’s law, f=98% 
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Amdahl’s law, f=98% 

0

1

2

3

4

5

6

7

8

9

Sp
e

ed
u

p
 (

re
la

ti
ve

 t
o

 1
 b

ig
 c

o
re

) 

#Cores 

256 small 

1+192 

Leave larger core idle 
in parallel section 



Why parallelism? 

Amdahl’s law 

Why asymmetric performance? 

Multi-processing hardware 

Parallel algorithms 



Merge sort (2-core) 



Merge sort (4-core) 



Merge sort (8-core) 



T∞ (span): critical path length 



T1 (work): time to run sequentially 



Tserial: optimized sequential code 



A good multi-core parallel 
algorithm 

• T1/Tserial is low 
– What we lose on sequential performance we 

must make up through parallelism 

– Resource availability may limit the ability to do 
that  
 

• T∞  grows slowly with the problem size 
– We tackle bigger problems by using more 

cores, not by running for longer 



Quick-sort on “good” input 

Sequential 
partition 

Recurse 

Sequential 
append 

Recurse 

T1 = O(n logn) 
T∞ = O(n) 



Quick-sort on “good” input 

Parallel 
partition 

Parallel 
append 

T1 = O(n logn) 
T∞  = O(n) 

Recurse Recurse 



Quick-sort on “good” input 

Parallel 
partition 

Parallel 
append 

T1 = O(n log n) 
T∞ = O(log2

 n) 

Recurse 

Recurse 



Scheduling from a DAG 
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Scheduling from a DAG 

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12

Sp
e

ed
u

p
 (

T p
 /

 T
1
) 

# cores 

Tp ≥ T∞ 

Tp ≥ T1 / P 



In CILK: Tp ≈ T1 / p + c T∞ 
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In CILK: Tp ≈ T1 / p + c T∞ 
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Why parallelism? 

Amdahl’s law 

Why asymmetric performance? 

Multi-processing hardware 

Parallel algorithms 
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SMP multiprocessor 
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Interconnect 
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Three kinds of parallel hardware 

• Multi-threaded cores 
– Increase utilization of a core or memory b/w 
– Peak ops/cycle fixed 

• Multiple cores 
– Increase ops/cycle 
– Don’t necessarily scale caches and off-chip resources 

proportionately 

• Multi-processor machines 
– Increase ops/cycle 
– Often scale cache & memory capacities and b/w 

proportionately 
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