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Merge sort, dual core

16MB input (32-bit integers)
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Throughput per core / elements per ms
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AMD Phenom 3-core
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The power wall

» Moore’s law: area of transistor is about 50% smaller each generation
— A given chip area accommodates twice as many transistors

d den = f V2
— Shrinking process technology (constant field scaling) allows reducing V
to partially counteract increasing f

— V cannot be reduced arbitrarily
* Halving V more than halves max f (for a given transistor)
* Physical limits

* I:)Ieak - V(Isub + on)
— Reduce |, (sub-threshold leakage): turn off component, increase
threshold volatage (reduces max f)

— Reduce |, (gate-oxide leakage): increase oxide thickness (but it needs to
decrease with process scale)



Operations / us

10000

1000

100

[N
o

The memory wall

Microsoft

Research

CPU

1MHz CPU clock,
500ns to access

Memory

memory in 1985
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The memory wall
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The ILP wall

ILP = “Instruction level parallelism”

Implicit parallelism between instructions in
a single thread

ldentified by the hardware

— Speculate past memory accesses

— Speculate past control transfer

Diminishing returns
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Power wall + ILP wall + memory wall = brick wall

» Power wall means we can't just clock
processors faster any longer

» Memory wall means that many workload's
nerf is dominated by memory access times

* |ILP wall means we can't find extra work to
<eep functional units busy while waiting
for memory accesses
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Amdahl’s law
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Amdahl’s law

“Sorting takes 70% of the execution time
of a sequential program. You replace the
sorting algorithm with one that scales
perfectly on multi-core hardware. On a
machine with n cores, how many cores do
you need to use to get a 4x speed-up on
the overall algorithm?”
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Amdahl’s law f=70%
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Amdahl’s law f=70%

MaxSpeedup(f,c) =
(1-1)+ f/c

f = fraction of code speedup applies to
c = number of cores used
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Amdahl’s law f=70%
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Amdahl’s law f=98%
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Amdahl’s law & multi-core

Suppose that the same h/w budget (space or power) can make us:
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Pert of big & small cores

Core perf (relative to 1 big core
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Perf (relative to 1 big core)
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Amdahl’s law f=98%
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Perf (relative to 1 big core)
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Amdahl’s law f=75%
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Perf (relative to 1 big core)
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Why asymmetric performance?
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Asymmetric chips
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Perf (relative to 1 big core)

Microsoft

Research

Amdahl’s law f=75%
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Perf (relative to 1 big core)
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Amdahl’s law, f=5%
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Perf (relative to 1 big core)
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Amdahl’s law f=98%
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Speedup (relative to 1 big core)
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Parallel algorithms
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Merge sort (2-core)
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T, (span): critical path length
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A good multi-core parallel
algorithm

* Tl/TseriaI is low

— What we lose on sequential performance we
must make up through parallelism

— Resource availability may limit the ability to do
that

* T, grows slowly with the problem size

— We tackle bigger problems by using more
cores, not by running for longer
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Quick-sort on “good” input
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Quick-sort on “good” input
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Quick-sort on “good” input
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Scheduling from a DAG
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InCILK: T,~ T, /p +cT,

Given abundant parallelism (T << T,):
* “Work first principle”

* Keep T, close to T, |
* Put overhead on T, to keep T, low

c=1.25
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InCILK: T,~ T, /p +cT,

Given abundant parallelism (T << T,):

* “Work first principle”
* Keep T, close to T, |

* Put overhead on T, to keep T, low
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Multi-processing hardware
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Multi-threaded h/w
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Main memory

 Multiple threads in a
workload with:

— Poor spatial locality

— Frequent memory
accesses
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Multi-threaded h/w
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Multi-core h/w — common L2
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Multi-core h/w — common L2
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Multi-core h/w — common L2
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Multi-core h/w — common L2
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Multi-core h/w — common L2
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Multi-core h/w — common L2
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Multi-core h/w — common L2
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Multi-core h/w — common L2
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Multi-core h/w — common L2
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Multi-core h/w — common L2

Write L

>
— |

| B WIN[EP

~ Single- Single-
threaded threaded
core core
he | e
e

B IWNE

Main memory




Microsoft

Research

Multi-core h/w — common L2
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Multi-core h/w — common L2
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Multi-core h/w — common L2
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Multi-core h/w — separate L2
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Multi-core h/w — additional L3
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Multi-threaded multi-core h/w
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SMP multiprocessor
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Three kinds of parallel hardware

» Multi-threaded cores
— Increase utilization of a core or memory b/w
— Peak ops/cycle fixed

« Multiple cores

— Increase ops/cycle

— Don't necessarily scale caches and off-chip resources
proportionately

» Multi-processor machines

— Increase ops/cycle

— Often scale cache & memory capacities and b/w
proportionately
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