

Multicore Programming

Parallel Hardware and Performance

8 Nov 2010 (Part 1)

Peter Sewell Jaroslav Ševčík Tim Harris

Merge sort

16MB input (32-bit integers)

Recurse(left)

Recurse(right)

Copy back to input array

Merge to scratch array

~98% execution time

~2% execution time

Merge sort, dual core

16MB input (32-bit integers)

Recurse(left) Recurse(right)

Copy back to input array

Merge to scratch array

T7300 dual-core laptop

880

900

920

940

960

980

1000

1020

1040

0 1000 2000 3000 4000 5000

2-core

1-core

Th
ro

u
gh

p
u

t
p

er
 c

o
re

 /
 e

le
m

en
ts

 p
er

 m
s

Wall-clock execution time / ms

AMD Phenom 3-core

1000

1100

1200

1300

1400

1500

1600

0 500 1000 1500 2000 2500 3000 3500 4000

1-core

2-core

Th
ro

u
gh

p
u

t
p

er
 c

o
re

 /
 e

le
m

en
ts

 p
er

 m
s

Wall-clock execution time / ms

The power wall

• Moore’s law: area of transistor is about 50% smaller each generation
– A given chip area accommodates twice as many transistors

• Pdyn = α f V2
– Shrinking process technology (constant field scaling) allows reducing V

to partially counteract increasing f
– V cannot be reduced arbitrarily

• Halving V more than halves max f (for a given transistor)
• Physical limits

• Pleak = V(Isub + Iox)
– Reduce Isub (sub-threshold leakage): turn off component, increase

threshold volatage (reduces max f)
– Reduce Iox (gate-oxide leakage): increase oxide thickness (but it needs to

decrease with process scale)

The memory wall

1

10

100

1000

10000

O
p

er
at

io
n

s
 /

 µ
s

1MHz CPU clock,
500ns to access
memory in 1985

CPU

Memory

The memory wall

0

500

1000

1500

2000

2500

3000

3500

4000

4500

O
p

er
at

io
n

s
 /

 µ
s

CPU

Cycles per memory
access: 200-300

Memory

The ILP wall

• ILP = “Instruction level parallelism”

• Implicit parallelism between instructions in
a single thread

• Identified by the hardware

– Speculate past memory accesses

– Speculate past control transfer

• Diminishing returns

Power wall + ILP wall + memory wall = brick wall

• Power wall means we can’t just clock
processors faster any longer

• Memory wall means that many workload’s
perf is dominated by memory access times

• ILP wall means we can’t find extra work to
keep functional units busy while waiting
for memory accesses

Why parallelism?

Amdahl’s law

Why asymmetric performance?

Multi-processing hardware

Parallel algorithms

Amdahl’s law

• “Sorting takes 70% of the execution time
of a sequential program. You replace the
sorting algorithm with one that scales
perfectly on multi-core hardware. On a
machine with n cores, how many cores do
you need to use to get a 4x speed-up on
the overall algorithm?”

Amdahl’s law, f=70%

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
e

ed
u

p

#cores

Desired 4x
speedup

Speedup achieved
(perfect scaling on 70%)

Amdahl’s law, f=70%

𝑀𝑎𝑥𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑓, 𝑐) =
1

 1 − 𝑓 +
𝑓

𝑐

 f = fraction of code speedup applies to
c = number of cores used

Amdahl’s law, f=70%

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
e

ed
u

p

#cores

Desired 4x
speedup

Speedup achieved
(perfect scaling on 70%)

Limit as c→∞ = 1/(1-f) = 3.33

Amdahl’s law, f=10%

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
e

ed
u

p

#cores

Speedup achieved
with perfect scaling

Amdahl’s law limit,
just 1.11x

Amdahl’s law, f=98%

0

10

20

30

40

50

60

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

Sp
e

ed
u

p

#cores

Amdahl’s law & multi-core

Suppose that the same h/w budget (space or power) can make us:

1 2

5 6

3 4

7 8

9 10

13 14

11 12

15 16

1

1 2

3 4

Perf of big & small cores

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1/16 1/8 1/4 1/2 1

C
o

re
 p

er
f

(r
el

at
iv

e
to

 1
 b

ig
 c

o
re

Resources dedicated to core

Assumption: perf = α √resource

Total perf:
16 * 1/4 = 4

Total perf:
1 * 1 = 1

Amdahl’s law, f=98%

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pe
rf

 (
re

la
ti

ve
 t

o
 1

 b
ig

 c
o

re
)

#Cores

1 big

4 medium

16 small

Amdahl’s law, f=75%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pe
rf

 (
re

la
ti

ve
 t

o
 1

 b
ig

 c
o

re
)

#Cores

1 big

4 medium

16 small

Amdahl’s law, f=5%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pe
rf

 (
re

la
ti

ve
 t

o
 1

 b
ig

 c
o

re
)

#Cores

1 big

4 medium

16 small

Why parallelism?

Amdahl’s law

Why asymmetric performance?

Multi-processing hardware

Parallel algorithms

Asymmetric chips

1

3 4

7 8

9 10

13 14

11 12

15 16

Amdahl’s law, f=75%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pe
rf

 (
re

la
ti

ve
 t

o
 1

 b
ig

 c
o

re
)

#Cores

1 big

4 medium

16 small

1+12

Amdahl’s law, f=5%

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pe
rf

 (
re

la
ti

ve
 t

o
 1

 b
ig

 c
o

re
)

#Cores

1 big

4 medium

16 small

1+12

Amdahl’s law, f=98%

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pe
rf

 (
re

la
ti

ve
 t

o
 1

 b
ig

 c
o

re
)

#Cores

1 big

4 medium
16 small

1+12

Amdahl’s law, f=98%

0

1

2

3

4

5

6

7

8

9

Sp
e

ed
u

p
 (

re
la

ti
ve

 t
o

 1
 b

ig
 c

o
re

)

#Cores

256 small

1+192

Amdahl’s law, f=98%

0

1

2

3

4

5

6

7

8

9

Sp
e

ed
u

p
 (

re
la

ti
ve

 t
o

 1
 b

ig
 c

o
re

)

#Cores

256 small

1+192

Leave larger core idle
in parallel section

Why parallelism?

Amdahl’s law

Why asymmetric performance?

Multi-processing hardware

Parallel algorithms

Merge sort (2-core)

Merge sort (4-core)

Merge sort (8-core)

T∞ (span): critical path length

T1 (work): time to run sequentially

Tserial: optimized sequential code

A good multi-core parallel
algorithm

• T1/Tserial is low
– What we lose on sequential performance we

must make up through parallelism

– Resource availability may limit the ability to do
that

• T∞ grows slowly with the problem size
– We tackle bigger problems by using more

cores, not by running for longer

Quick-sort on “good” input

Sequential
partition

Recurse

Sequential
append

Recurse

T1 = O(n logn)
T∞ = O(n)

Quick-sort on “good” input

Parallel
partition

Parallel
append

T1 = O(n logn)
T∞ = O(n)

Recurse Recurse

Quick-sort on “good” input

Parallel
partition

Parallel
append

T1 = O(n log n)
T∞ = O(log2

 n)

Recurse

Recurse

Scheduling from a DAG

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12

Ex
ec

u
ti

o
n

 t
im

e

cores

Tp ≥ T∞

Tp ≥ T1 / P

T1 = 10

T∞ = 2

Scheduling from a DAG

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12

Sp
e

ed
u

p
 (

T p
 /

 T
1
)

cores

Tp ≥ T∞

Tp ≥ T1 / P

In CILK: Tp ≈ T1 / p + c T∞

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12

Sp
e

ed
u

p
 (

T p
 /

 T
1
)

cores

Tp ≥ T∞

Tp ≥ T1 / P

Given abundant parallelism (T∞<< T1):
• “Work first principle”
• Keep T1 close to Tserial

• Put overhead on T∞ to keep T1 low

c=1.25

In CILK: Tp ≈ T1 / p + c T∞

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12

Sp
e

ed
u

p
 (

T p
 /

 T
1
)

cores

Tp ≥ T∞

Tp ≥ T1 / P

Given abundant parallelism (T∞<< T1):
• “Work first principle”
• Keep T1 close to Tserial

• Put overhead on T∞ to keep T1 low

c=1

c=1.25

Why parallelism?

Amdahl’s law

Why asymmetric performance?

Multi-processing hardware

Parallel algorithms

Main memory

Multi-threaded
single core

1

2

3

4

5
...

Multi-threaded h/w

1

2

3

4

5
...

1

2

3

4

5
...

• Multiple threads in a
workload with:
– Poor spatial locality
– Frequent memory

accesses

L2 cache (4MB)

L1 cache (64KB)
...

ALU

ALU

Multi-threaded
single core

Main memory

1

2

3

4

5
...

Multi-threaded h/w

1

2

3

4

5
...

• Multiple threads
with synergistic
resource needs

L2 cache (4MB)

L1 cache (64KB)

 ALU

ALU

Core

1

2

3

4

5
...

Multi-core h/w – common L2

1

2

3

4

5
...

L2 cache

Core

Main memory

L1 cache L1 cache

ALU

ALU

ALU

ALU

Single-
threaded

core

1

2

3

4

5
...

Multi-core h/w – common L2

1

2

3

4

5
...

L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

Read

Single-
threaded

core

1

2

3

4

5
...

Multi-core h/w – common L2

1

2

3

4

5
...

L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

S

Read

Single-
threaded

core

1

2

3

4

5
...

Multi-core h/w – common L2

1

2

3

4

5
...

L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

S

S

Read

Single-
threaded

core

1

2

3

4

5
...

Multi-core h/w – common L2

1

2

3

4

5
...

L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

S

S

Read

Single-
threaded

core

1

2

3

4

5
...

Multi-core h/w – common L2

1

2

3

4

5
...

L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

S

S S

Read

Single-
threaded

core

1

2

3

4

5
...

Multi-core h/w – common L2

1

2

3

4

5
...

L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

S

S S

Write

Single-
threaded

core

1

2

3

4

5
...

Multi-core h/w – common L2

1

2

3

4

5
...

L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

S

... S

Write

Single-
threaded

core

1

2

3

4

5
...

Multi-core h/w – common L2

1

2

3

4

5
...

L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

...

... S

Write

Single-
threaded

core

1

2

3

4

5
...

Multi-core h/w – common L2

1

2

3

4

5
...

L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

...

... I

Write

Single-
threaded

core

1

2

3

4

5
...

Multi-core h/w – common L2

1

2

3

4

5
...

L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

E

M I

Write

Single-
threaded

core

1

2

3

4

5
...

Multi-core h/w – common L2

1

2

3

4

5
...

L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

E

M I

Write

Single-
threaded

core

1

2

3

4

5
...

Multi-core h/w – common L2

1

2

3

4

5
...

L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

E

M ...

Write

Single-
threaded

core

1

2

3

4

5
...

Multi-core h/w – common L2

1

2

3

4

5
...

L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

...

M ...

Write

Single-
threaded

core

1

2

3

4

5
...

Multi-core h/w – common L2

1

2

3

4

5
...

L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

M

I ...

Write

Single-
threaded

core

1

2

3

4

5
...

Multi-core h/w – common L2

1

2

3

4

5
...

L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache I E

Write

M

Single-
threaded

core

1

2

3

4

5
...

Multi-core h/w – separate L2

1

2

3

4

5
...

L1 cache

Single-
threaded

core

L1 cache

Main memory

L2 cache L2 cache

1

2

3

4

5
...

Multi-core h/w – additional L3

1

2

3

4

5
...

Main memory

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

L2 cache L2 cache

L3 cache

1

2

3

4

5
...

Multi-threaded multi-core h/w

1

2

3

4

5
...

Main memory

1

2

3

4

5
...

1

2

3

4

5
...

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

L2 cache L2 cache

L3 cache

SMP multiprocessor

Single-
threaded

core

1

2

3

4

5
...

1

2

3

4

5
...

L1 cache

Single-
threaded

core

L1 cache

L2 cache L2 cache

Main memory

Interconnect

NUMA multiprocessor
Single-

threaded
core

L1 cache

Single-
threaded

core

L1 cache

Memory & directory

L2 cache L2 cache

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

Memory & directory

L2 cache L2 cache

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

Memory & directory

L2 cache L2 cache

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

Memory & directory

L2 cache L2 cache

Three kinds of parallel hardware

• Multi-threaded cores
– Increase utilization of a core or memory b/w
– Peak ops/cycle fixed

• Multiple cores
– Increase ops/cycle
– Don’t necessarily scale caches and off-chip resources

proportionately

• Multi-processor machines
– Increase ops/cycle
– Often scale cache & memory capacities and b/w

proportionately

 AMD Phenom

1000

1100

1200

1300

1400

1500

1600

0 500 1000 1500 2000 2500 3000 3500 4000

1-core

2-core

Th
ro

u
gh

p
u

t
p

er
 c

o
re

 /
 e

le
m

en
ts

 p
er

 m
s

Wall-clock execution time / ms

